If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2u^2-6u+2=0
a = 2; b = -6; c = +2;
Δ = b2-4ac
Δ = -62-4·2·2
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{5}}{2*2}=\frac{6-2\sqrt{5}}{4} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{5}}{2*2}=\frac{6+2\sqrt{5}}{4} $
| b/5+3=-1 | | -3x+6+x=2 | | −6x+1=−4x−15. | | 9^m=1/81 | | 0.33(9x-30)+5=16 | | w/5+w=20 | | 6(4-x)=4(2-x) | | 1/3(9x=30)+5=16 | | 11m-8/6=16 | | 2(x-4)=-(x-7) | | -2(1.6-3)+x=2 | | -2(1.6-3)+x=3 | | B-(0.17b)= | | 2x+15x=51 | | -9x+7=-2x-7 | | y=49+11 | | 0.4-y=-17.6 | | y=15+7 | | m/6+24=27 | | 4.0x+4=2.0x+8 | | x+2x^2+x+20x=0 | | (x+2)(x^2+x+20x)=0 | | h/10+30=35 | | -3(a−4)=-9 | | 4=m-35/9 | | 3^(2x+5)=5^(2x) | | 9+9t=72 | | 90=38.43+0.25x | | w+11/5=7 | | 17.8+n=20 | | 4/15=-2/5a | | 10=p+16/3 |